Strand	Topic	Grade -1/1	Grade 1/+1	Grade-2/2	Grade 2/ $2+$	Grade -3/3	Grade 3/3+	Grade -4/ 4/ 4+	$\begin{gathered} \text { Grade }-5 / 5 / \\ 5+ \end{gathered}$	Grade -6/ 6/ 6+	Grade -7/7/7+	Grade -8/8/8+	Grade -9/9/9+
Number	$\underbrace{}_{\substack{\text { Acuracand } \\ \text { buuns }}}$	$\begin{aligned} & \text { Round positive } \\ & \text { whole numbers to } \\ & \text { the nearest 10, } 100 \\ & \text { or } 1000 \\ & \hline \end{aligned}$		Round decimals whole numb	Round numbers to significant figures				Identify the upper and lower bounds of a measurement		Calculate the upper and lower bounds of 2D measurements e.g. are	$\begin{aligned} & \text { Calculate the upper and } \\ & \text { lower bounds of other } \\ & \text { compound measurements } \\ & \text { e.g. density } \end{aligned}$	
Number	$\underbrace{}_{\substack{\text { Accuracand } \\ \text { buons }}}$								Recognise that measurements given to the nearest whole unit may be inaccurate by up to one half in either direction. Use error intervals	 Use inequality notation to specify simple error intervals due to truncation or rounding	Calculate the upper and lower bounds of 2D measurements involving subtraction in length		
Number	$\underbrace{\text { a }}_{\substack{\text { acuurca and } \\ \text { bunus }}}$										Find upper and lower bounds of calculatio involve division involve division		
Number	Catalations		Apply four operations in correct order to integers and proper fractions	Check a result by backward		Add and subtract negative integers from positive and negative numbers	$\begin{aligned} & \text { Simplify expressions } \\ & \text { containing powers to } \\ & \text { complete the calculation } \end{aligned}$	Oivide anitege by		Solve more challenging problems involving the four operations with fractions including mixed numbers			
Number	Calculation	Ade and sitrart	Choose and use an to subtract whole numbers with up to 5 digits. Example: 45000 -$2695,36628-1455$ $54839-28405$			$\begin{aligned} & \text { Add and subtract } \\ & \text { simple fractions } \\ & \text { with denominators } \\ & \text { of any size } \end{aligned}$	Divide integers and decimals, including by 0.06 (divisions related to $0 . \mathrm{t} \times 0 . \mathrm{t}$ or $0 . \mathrm{t} \times 0.0 \mathrm{~h}$, 0.0 h)						
Number	Catalations	$\begin{aligned} & \text { Choose and use an } \\ & \text { appropriate } \\ & \text { method to add } \\ & \text { whole numbers } \\ & \text { with up to } 5 \text { digits. } \\ & \text { Example: } 86342+ \\ & 75218,34608+ \\ & 2021,23509+48 \\ & 253 \end{aligned}$	Choose and use an appropriate method to subtract whole numbers with up to 7 digits. \qquad $4372178,23000-$ $5,1234000-1999$	Divide numbers up to 4 digits by numbers up to 12 using the formal written method of short division, where appropriate interpret remainders according to the context and use reasoning to find a solution. Example: $5278 \div$ $3,4887 \div 6,9246$ $\div 8$				Know that a number multiplied					
Number	Caluations	Find a difference by counting up through the next multiple of 10	Choose and use an appropriate method, including column addition, to add whole numbers with up to 7 digits, and identify patterns in the number of steps required to generate palindromic numbers. Example: $2347256+1238$ $584,462308+5090$, $48673+49999$	Extend written methods to HTU methods to HTU - U		Add mixed number fractions without common denominators, where the fraction parts add up to more than 1	Multiply decimals by whole numbers by multiplying by 10 or 100 to make whole number calculations then dividing by 10 or 100 to find the answer Example: $23 \times 46.2,16 \times$ $39.2,24 \times 5.26$						
Number	Catuations	$\begin{aligned} & \text { Know by heart } \\ & \text { multiplication facts } \\ & \text { up to } 10 \times 10 \end{aligned}$		Extend written methods to TU \times Tu		$\begin{aligned} & \text { Be able to divide } \\ & \text { any number by } 0.1 \\ & \text { and } 0.01 \end{aligned}$	Recognise and use relationships between operations, including inverse operations	Multiply both sides of an inequality by a negative number					
Number	Catuations	$\underbrace{}_{\substack{\text { Parstion to mutitipy } \\ \text { menally } u \times 1}}$	Consolidate addin numbers mentally with increasingly Example: $8429+34$ 966, $982384-600$ 10					Solve problems and subtraction of fractions includin mixed numbers					
Number	Calculation	Usedobuting	$\begin{aligned} & \hline \text { Consolidate adding } \\ & \text { and subtracting } \\ & \text { whole numbers with } \\ & \text { more than } 4 \text { digits, } \\ & \text { including using } \\ & \text { column addition and } \\ & \text { subtraction. } \\ & \text { Example: } \\ & 53407-21999,39 \\ & 264+51703+9810, \\ & 13872-11219 \\ & \hline \end{aligned}$	Know and use the order of operation		$\begin{aligned} & \text { Be able to multiply } \\ & \text { any number by } 0.1 \\ & \text { and } 0.01 \end{aligned}$		Understand the difference between number and subtracting a squared number within a more complex calculation					
Number	Calculation	Usehavive					Use knowledge of place value to calculate the product or division of two decimals where one or both are less than 1 and at least one has two digits other than zero.	Understand that each of the headings in the place value system, to the left of the units column, can power of ten					
Number	Caluations	$\begin{aligned} & \text { Use standard } \\ & \text { column procedures } \\ & \text { to add and subtract } \\ & \text { whole numbers } \end{aligned}$	Multiply and divide integers by 10 and 100, and explain the 100 , and explain th effect				Use standard column procedures to add and subtract integers and decimals of any size, including a mixture of large and small numbers with different numbers of decimal places	$\begin{aligned} & \text { Understand the } \\ & \text { order in which to } \\ & \text { calculate } \\ & \text { expressions that } \\ & \text { contain powers and } \\ & \text { brackets in both the } \\ & \text { numerator and } \\ & \text { denominator of a } \\ & \text { fraction } \\ & \hline \end{aligned}$					
Number	Calculation		Understand addition and subtraction as they apply to whole numbers and decimals	Mutipy by 0			Write numbers as a decimal number of millions or thousands, e.g. 23600000 as 23.6 millio						

Number	$\underbrace{}_{\substack{\text { Frationsand } \\ \text { decimas }}}$												
Number	Fractions, decimals and percentages			Calculate simple percentages	Calculate simple fractions of quantities and measurements answers)	Use knowledge of equivalence between fractions and percentage and menta roblems involving the calculation of percentages, including amounts measures	Convert a fraction to a decimal to make a calculation easier						
Number	Fractions, decimals and percentages			Extend mental methods of include percentages		Calculate fractions of quantities and measurements (fraction answers)							
Number	Fractions, decimals and percentage					$\begin{aligned} & \text { Interpret } \\ & \text { percentage as the } \\ & \text { operator 'so many } \\ & \text { hundredths of' } \end{aligned}$							
Number		$\begin{aligned} & \text { Know square } \\ & \text { numbers, } 10 \times 10,1 \\ & \times 1 \text { to } 5 \times 5 \end{aligned}$	Know square numbers 6×6 to $9 \times$ 9	Find roots of square numbers unto 100 (i.e. roots up to 10)		Be able to estimate square roots of non square numbers less than 100	Find cube roots by factorising (e.g. cube root of 216 is cube root of 8×27 which is $6 ; 216$ $=8 \times 27$ should be given be given)	Use the index laws to include negative power answers and understand that these answers are smaller than 1	Calculate with roots (surds - exact values)	Evaluate a number writtern with a negative power	Understand that the nverse operation of raising a positive number to a power n is raising the result of this operation to the power $1 / n$	Evaluate a number written as a negative or fractional power e.g. $64^{-2 / 3}$	Solve problems involving negative and fractional indices e.g. $1 / 16=2^{n}, 27^{-1 / 3} \times 9^{3 / 2}$
Number								square roots to 1 decimal place of non square numbers less than		Estimate powers and roots of any given positive number			
Number				Know square numbers beyond 10×10		Extend mental calculations to cubes and cube roots	Find square roots by factorising (e.g. square root of 324 is square roo of 4×81 which is $18 ; 324$ $=4 \times 81$ should be given) \qquad	Use the laws of indices to multiply and divide numbers written in index notation	Use the laws of indices for a number written in index form raised a power e.g. $\left(3^{2}\right)^{4}$	Recall that $\mathrm{n}^{0}=1$ and $n^{-1}=1 / n$ for positive integers n as well as In for any positive number n		Find the value of calculations using indices including fractional and negative indices	
Number				$\begin{aligned} & \text { Recognise the } \\ & \text { first } \\ & \text { triangular } \\ & \text { numbers } \end{aligned}$		Extend mental calculations to squares and square roots	Use mental strategies to solve word problems set roots and cube roots roots and cube roots mentally	Use the square, cube and power keys on a calculator					
Number	${ }_{\substack{\text { Indies, } \\ \text { andeves } \\ \text { andots }}}$					Find and interpret roots of non square numbers using square root key	Combine laws of arithmetic for brackets with mental calculations +36)	Use an extended range of calculator functions, including $+,-, x, x^{2}, \sqrt{x}$, memory, $x^{y}, x^{1 / y}$ brackets					
Number						Give the positive and negative square root of a square number	Combine laws of arithetit for rackets with mental caculutions of cubes, e.g. $(23-13+4$ $-8)^{3}$						
Number	${ }_{\substack{\text { Indices, powes } \\ \text { and oots }}}$					Know all the squares of numbers ess than 16 and now the squar square number square number	Combine laws of arithmetic for brackets with mental calculations of square roots, e.g. $V(45+36)$						
Number						Recant e cube of	Combine laws ofarithmetic for brackets with mental cacculations of squares $+4-8)^{2}$, e.g ($(23-13$$+4-1$						
Number	(lates, powes					$\begin{aligned} & \text { Use index notation } \\ & \text { for small integer } \\ & \text { powers, e.g. } 24=3 \\ & \times 2^{3} \end{aligned}$	Establish index laws for positive powers where the answer is a positive power						
Number						Use positive integer powers and associated real roots (square, cube and higher)	Extend the patterns by sing the index law for division established for positive power answers, to the power of zero is 1						
Number	$\underbrace{}_{\substack{\text { Indies, power } \\ \text { and rots }}}$						Mentally calculate the squares of numbers less than 16 multiplied by a multiple of ten, e.g. 0.2 , $300,0.400$ 300, 0.400						
Number	$\underbrace{\text { ate }}_{\substack{\text { Indies, powers } \\ \text { and oots }}}$							Use an extended range of calculator functions, includin $+,-, x, x^{2}, V x$, brackets					
Number	Percerages				Recall and us equivalences between simple fractions, decimals and percentages, including in different Example: 360 cats are tested. 90 of the cats prefer wet cat food. 90 out of $360=$ 90 $360=1$ $4=25 \%$ of cats								
					Solve problems involving the calculation of the use of percentages for comparison. Example: Davinder has been asked to of CDs by 10%. How much will a CD costing $£ 12$ be reduced by?	Solve problems involving the percentages and the use of percentages for comparison. Example: 20\% of A laptop costs $£ 500$. In a sale there is How much will the laptop cost?							
Number	Pase value		Order positive decimals as a list with the smallest on the left (decimals significant figures)	Compare decimals in contexts	Order negative decimals with the largest on the left (decimals should be to 2 or 3 significant figures)	Use the equivalence of fractions, decimals and percentages to compare proportions (i.e. compare a fraction and a percentage) and a percentage)	Order fractions by converting them to decimals or otherwise						
Number	Place value	Read, write, order and compare numbers up to 1 000000 and determine the value of each digit. Example: 405297 > 450 279, $570523>507$ 203, $909250<990250$	Order positive decimals with the largest on the left (decimals should be figures)	of each digit in numbers with up to 3 decimal multiply and divide numbers by 10,100 and 1000 giving answers to up to 3 decimal places; use this knowledge to compare and and round numbers, with up to 3 decimal places. Example: 3.924 two hundredths two hundredths,	Order negative decimals with the smallest on the left (decimals should be to 2 or 3 significant figures)		Use one calculation to find the answer to another						

Number	Place alue	Use diagrams to compare two or more simple fractions	Use > or < correctly between two positive decimals (decimals should be o 4 or 5 significant figures)	Solve numbe and practical problems involving integers. Example: 5583 532 rounded to the nearest million is 6000 000	Use > or < correctly between two negative decimals (decimals should be to 2 or 3 significant figures)								
Number	Pace alue		Compare and order numbers with 1,2 or Example: Write in order: 2.874, 2.78 and 2.87. Write numbers between 8.24 and 8.25 . Which is further, 4.056 km or 4.506 km ?	Solve number and practical problems tha value in large numbers, rounding, comparison and negative numbers. Example: 57905 -4999, 682421 rounded to the thousand is 680 000	Order fractions, decimals and percentages								
Number	Plae alue		Know what each digit represents in numbers with up to 2 decimal places	$\begin{aligned} & \text { Understand and } \\ & \text { use decimal } \\ & \text { notation and } \\ & \text { place value } \end{aligned}$									
Number	Place alue		Put digits in the correct place in a calculation										
Number	Pace value		Read, write, order and compare numbers up to 10 000000 and determine the value of each digit. Example: 4372195 < 816039,7652771 <7653672	use numbers in context, and calculate intervals across zero. Example: What is the difference in temperature between $6^{\circ} \mathrm{C}$ and \qquad									
Number	Place alue		Read, write, order and compare numbers up to 10 000000 and determine the value of each digit. 3811642,6582684										
Number	Pace alue												
Number	Ratio						Solve problems involving similar shapes where the scale factor is known or can be found. Example: A model car is $1 / 5$ the size of a real car. If the length of the model car is 86 cm , what is the length of the real	${ }_{\substack{\text { coner beween } \\ \text { curencies }}}$					
Number	Rounding			Approximate before carrying out an addition or subtraction	$\begin{aligned} & \text { Check a result by } \\ & \text { considering } \\ & \text { whetherit is of } \\ & \text { the rightorder } \\ & \text { of magnitude } \end{aligned}$		Know there are different ways of finding an approximate answer	Check reasonableness of answers					
Number	Rounding			Round any whole number to a required degree of accuracy (e.g 3497992 \qquad nearest million is 3000000. 9646101 rounded to the nearest million 10000 000)			Use numbers of any size rounded to 1 significant figure to make standardised estimates for calculations with one step	calculations by rounding numbers to 1 significan figure					
Number	Rounding			Round any whole number to a required degree of accuracy (e.g. 38905 rounded to the nearest thousand is 39 000)	Use rounding to the nearest 10 or to a convenient number (e.g. round 62 to 63 when dividing by 9)			$\begin{aligned} & \text { Estimate answers to } \\ & \text { one- or two-step } \\ & \text { calculations } \end{aligned}$					
Number	Rounding			Round to a given number of decimal places	Work with numbers rounded to whole numbers or to 1 or 2 decimal places to estimate solutions			When using approximations, identify whether the estimate will be an under estimate or an over estimate					
Number	Sets								Undestand and	$\begin{aligned} & \text { Understand and use } \\ & \text { set notation } \\ & \text { including } n(A) \text { and } \\ & n(A \cap B) \end{aligned}$			
Number	Standad form							Interpret a calculator display using standard form	Convert between large and small standard form and vice-versa	Add and subtract in standard form without a calculator			
Number	Standad form							Recognise numbers written in standard form	Order numbers written in standard index form	Estimate the answer to calculations of numbers written in standard form			
Number	Standad form							Use standard form display and know numbers in standard form	Write numbers greater than 10 in standard index form	Multiply and divide numbers in standard form without a calculator			
Number	Standard form								Write numbers less than 10 in standard index form				
Number	Standard form								$\begin{aligned} & \text { Write numbers } \\ & \text { written in standard } \\ & \text { form as ordinary } \\ & \text { numbers } \\ & \hline \end{aligned}$				
Number	Standard form								Calculate with numbers in standard form using a calculator				
Number	Surds										$\begin{aligned} & \text { Simplify surd expressions } \\ & \text { involving squares (eg.g v12 } \\ & \text { v }(4 \times 3)=2 \mathrm{v}) \end{aligned}$	Rationalise a denominator single surd e.g. $3 / \sqrt{ } 2$	Rationalise a denominator when the denominator is an expression involving surds e.g. $(6+\sqrt{ } 2) /(8$ v2)
Number	Surds										Use fractions, surds and pi in exact calculations, without a calculator	Solve problems involving simplifying surds and rationalising the denominator	Write $(3-\sqrt{ } 3)^{2}$ in the form $a+b \sqrt{ } 3$
Agebra	Equations				Construct linear expressions from worded descriptions, and subtraction (e.g. 'add 7 to a number' gives answer $n+7$)	Construct equations by linking expressions to given information (e.g. if 8 is used to find the cost of hiring a machine for d days and I spend $£ 34$ equation using this information)	Construct and solve simple linear equations with unknown on one side	Construct and solve equations from geometrical information	Construct and solve equations from geometrical information where the unknown is on both sides of the equation	Construct and solve simple quadratic equations by factorising	Construct equations and linear graphs from real life contexts to solve problem	Solve quadratic equations of the form $x^{2}+b x+c$ by completing the square	Solve quadratic equations arising from algebraic fractions

Agebra	Expressions			Substitute integers into more complex formulae expressed in letter symbols, e.g. $a / b, a x+/-b$								
Agebra	Expessions											
Agebra	Fatatising		Use distributive law with brackets, with numbers			$\begin{aligned} & \text { Manipulate expressions } \\ & \text { by taking out common } \\ & \text { factors, not neessariy } \\ & \text { the highestes. e.s. } 4 \times+8= \\ & 2(2 x+4) \end{aligned}$		Factorise quadratic expressions of the orm $a x^{2}+b x+c$ where $a=1$, including the squares squares	Factorise to one bracket more complex expressions where the factor is $2 q(p+1)-3 p(p+1)$	$\begin{aligned} & \text { Factorise more complex } \\ & \text { expressions with the } \\ & \text { difference of two squares } \\ & \text { e.g. }\left(p^{2}-4\right)-(p-2)^{2} \end{aligned}$	actorise quadratic expressions of the form $a x^{2}+b x+c$ where $a \neq 1$	
Agebra	Fatatisiog					Use the distributive law to take out numerical common factors, $+8 b=2(3 a+4 b)$	Recognise when an expression is not factorised completely.	Factorise to one bracket by taking out the highest common factors of all terns eat.g.s. $x^{2} y+$ $6 x y^{2}=2 x y(x+3 y)$				
Agebra	formue				$\underbrace{}_{\substack{\text { consturatsimple } \\ \text { tomule }}}$	$\begin{gathered} \text { Change the subject of } \\ \text { formala in one estep e.g. }, ~ \\ =x+4 \end{gathered}$	Find an unknown where it is not the subject of the formula and where an equation must be solved.	Find an unknown where it is not th subject of the formula and where an equation must be solved and involves the square root	Change the subject of a formula including where the subject is the denominator of a fraction	Change the subject of a formula including where the subject is on both sides	Change the subject of a complex formula that involves cubing or cube root e.g. make x the subject of the formula $y=$ ${ }^{3}$ v4x	
Agebra	formue				Substitute numbers into simple formulae	Write the subject of a formula which doesn't need re-arranging using square or square root. E.g. $x^{2}=2 a+b$, make x the subject or $\sqrt{x}=2 a$	$\substack{\text { Rearanges simple } \\ \text { equatios }}$	$\begin{aligned} & \text { In simple cases, } \\ & \text { change the subject } \\ & \text { of the formula, e.g. } \\ & \text { make } c \text { the subject } \\ & \text { of the formula from } \\ & y=m x+c \end{aligned}$	Change the subject of a formula involving multiple steps		Change the subject of a complex formula that involves fractions, e.g. make u or v the subject of the formula $1 / v+1 / u=1 /$	
Agebra	formue				Use simple formulae. Example: $V=L \times W$ B, What does $3 n$ -1 mean?			Using simple formulae to solve problems	Change the subject f a formula which nvolves rearranging and squaring or square roo		Change the subject of a more complex formula hat involves the squar root e.g. make I the subject of the formula $T=$ 2pi $\mathrm{V}(1 / \mathrm{g})$	
Agebra	formue								In more complex cases, change the subject of the formula, e.g. make t the subject of the formula from $p=q+$			
Agebra	Functions	Example: $1 / 4 \mathrm{~m}=$ $0.75 \mathrm{~m}=75 \%$ of a metre, 10% of $£ 12=$ $1 / 10$ of $£ 12=£ 1.20$	Find outputs of more complex functions expressed in words (e.g.add 6 then multiply by 3) 3)	\qquad			Given $f(x)$ where $f(x)$ is a linear function, find a when $f(a)=$ whole number	Given $f(x)$ find $f(a)$ where a is a integer or fraction		Given $f(x)$ where $f(x)$ is a non linear function, find a when $f(a)=$ whole number		
Agebra	Functions		Find the inputs of simple functions expressed in words by using the output and inverse operations	Find outputs of more complex functions and inputs usin inverse operations	Generate four quadrant coordinate pairs of simple linear functions					Usefanction notaion		$\underset{\substack{\text { End the invese efa } \\ \text { inear funtion }}}{ }$
Agebra	Functions		Use function machines to find coordinates									Interpret the succession of tw functions as a composite function .g. for $f(x)$ and $g(x)$ find $\mathrm{gf}(\mathrm{x})$
Agebra	Graph	Read x and y coordinates in the first quadrant	Discuss and interpret line graphs and graphs of functions from a range of sources	positions on the full coordinate grid (all four quadrants). Example: Draw and join these points: $A(1,-1)$, $B(5,-1), C(1$, $-5)$. Reflect this triangle in the y axis and write the new coordinates. What do you What do you	Draw and use graphs to solve distance-time problems.			Find the equation of a straight-line from its graph	Calculate the acceleration by working out the gradient of a line on velocity time graph		Construct the graphs of simple loci including the circle $x^{2}+y^{2}=r^{2}$ for a circle of radius r centred at the plane	Apply to the graph of y $=f(x)$ the transformations $y=$ $-\mathrm{f}(x), y=\mathrm{f}(-x)$ and $y=$ $-f(-x)$ for linear, quadratic, cubic, sine and cosine functions
Agebra	Graph			dentify points with given coordinates and coordinates of a four quadrants	Draw and recognise lines parallel to axes, and also $y=x$ and $y=-x$	Discuss and interpret linear and non linear graphs from a range of sources	Find the equation of a real-life straight line graph that goes through the origin	Generate points and plot graphs of simple cubic functions, then more general functions	ind approximate solutions of a quadratic equation from the graph of quadratic function quadratic function	Find the equation of a reallife straight line graph DOES NOT pass through the origin	Find the gradient of the radius that meets the circle at a given poin	Apply to the graph of y $=f(x)$ the transformations $y=$ $\mathrm{f}(x)+a, y=\mathrm{f}(a x)$, $y=\mathrm{f}(x+a)$ and y $a f(x)$ for linear quadratic, cubic, sine and cosine functions of
Agebra	Graph		$\begin{aligned} & \text { Draw, straight- } \\ & \text { line eraphs for } \\ & \text { realife } \\ & \text { situations } \end{aligned}$	Plot a graph given a table of values	coordinates of points identified by geometrical information in 2D (all four quadrants) for simple shapes (e.g. squares and	$\begin{aligned} & \text { Draw distance-time } \\ & \text { graph sand velocity-time } \\ & \text { graphs } \end{aligned}$	Generate points and plot graphs of simple quadratic functions, then functions	Given the coordinates of points A and B calculate the length of $A B$	Find the coordinates of the midpoint of a line from coordinates using a formula	Find the equation of the ine through one point with a given gradient	Interpret transformations of graphs and write the functions algebraically, e.g. write the equation of $f(x)+a$ or $f(x-a)$ $+a$ or $f(x-a)$	Calculate the distance travelled by finding the area of a velocity time graph by using rectangles and/o trapeziums
Agebra	Groph		Read values from straight-line graphs for reallife situations	Plot a simple distance-time graph (straightline graphs)		Find the coordinates of the midpoint of a line from a given graph	Identify parallel lines from their they are in the form $y=m x+c$	Identify and interpret gradient and y-intercept from an equation y $=m x+c$ $m x+c$	Generate points and plot graphs of more complex cubic functions	Find the equation of the line through two given points	Plot graphs of the exponential function $\mathrm{y}=\mathrm{k}^{\mathrm{x}}$ for integer values of x and simple positive values of k \qquad	Estimate area under a quadratic graph by dividing it into trapezia
Agebra	Graph		Use conventions and notation for in all four quadrants		Plot a graph of simple linear function in the first quadrant.	Given the coordinates of points A and B, calculate the midpoint of $A B$	Identify the y intercept from an equation $y=m x+c$	Identify and interpret roots, intercepts and turning points of a quadratic graph	Identify and interpret gradient from an equation $a x+b y=c$	Interpret and analyse a straight line graph and generate equations of lines parallel and perpendicular to the given line	Recognise, sketch and interpret graphs of trigonometric functions (in degrees) for sin, cos and tan within the range -360° to $+360^{\circ}$	Estimate the acceleration of a point n a velocity time graph (non-linear), by a point in time, and calculating the gradient.
Agebra	Graph			Plot and draw graphs of $y=a, x$ $=a, y=x$ and $y=$ x	Plot and draw graphs of straight ines using a table of form $y=m x+c$	Plot the graphs of simple linear functions in the form $y=m x+c$ in four quadrants	Interpret graphs including the rate of change	Identify parallel lines from their equations where they have to be rearranged first	Identify and interpret roots and intercepts of a cubic graphs	Know that a cubic function can have 1, 2 or 3 solutions	By re-arranging an equation and drawing a straight line on a graph find estimates for the solution of an equation	Estimate the average acceleration by calculating the gradient of the chord between two points on a velocity time g which is curved
Agebra	Grophs			Read x and y coordinates in a four quadrants		$\begin{aligned} & \text { Recognise that equations } \\ & \text { of the form } y=m x+c \\ & \text { correspond to straight- } \\ & \text { line graphs in the } \end{aligned}$ coordinate plane	Know that the gradient of a line is the change in y over change in x	dentify the line of symmetry of a quadratic graph		Know that a line perpendicular to the line y $=m x+c$, will have a gradient of $-1 / m$		Find an accurate root of a quadratic or cubic equation using an iterative process \qquad
Agebra	Grophs					Use gradients to interpret how one variable changes in relation to another	Plot and draw graphs of straight ines using a table of values given in the form $a x+b y=c$	interpret distance time graphs and alculate the speed of individual sections, total time	Recognise, sketch and interpret graphs of simple cubic functions	Know that the area under velocity time graph is the distance travelled		Know if the estimate under a quadratic graph is an overestimate or underestimate
												$\begin{aligned} & \text { Find the equation of a } \\ & \text { tangent to a circle at } \\ & \text { given point } \end{aligned}$
Agebra	Groph					$\underset{\substack{\text { Intepred distance time } \\ \text { gioph }}}{ }$	Plot the graphs of linear functions in the form $y=m x+c$ and recognise and compare their features		Recognise, sketch and interpret reciprocal graphs	Sketch a graph of a quadratic function by actorising and identifying roots, y-intercept and turning point tumg point		Given the graph of an exponential function y $=a b^{\mathrm{x}}$, work out the value of a and b
Agebra	Graph						Recognise a graph which represents a quadratic function	$\begin{aligned} & \text { Interpret } \\ & \begin{array}{l} \text { veloctr-time } \\ \text { graphs } \end{array} \end{aligned}$	Use quadratic and cubic graphs to find he solution to equations where the equation does not need to be rearranged	Use quadratic and cubic graphs to find the solution o equations where the equation needs to be rearranged		Identify turning points when the graph of $y=f(x)$ has been transformed by $y=-f(x)$ $y=f(-x)$ $y=-f(-x)$
Agebra	Graph							Know that the gradient of a velocity time graph represents acceleration	Use real life contexts to draw and use conversion graphs	Write down the equation of a line perpendicular to a given line		Interpret coordinates for trigonometric graphs

Agebra	Graph							Without drawing the graphs, compare and contrast features of graphs such as $y=$ $4 x, y=4 x+6, y=x+$ $6, y=-4 x, y=x-6$					
Agebra	Grophs								Generate points and plot graphs of simple reciprocal functions e.g. $y=$ $3 / x$ using a calculator to generate points		Plot graphs of exponentia functions in the form $y=$ a^{x} for integer values of x of a		$\begin{aligned} & \text { Plot graphs of } \\ & \text { exponential functions } \\ & \text { in the form } y=a b^{x} \text { for } \\ & \text { integer values of } x \text { and } \\ & \text { simple positive values } \\ & \text { of } a \text { and } b \end{aligned}$
${ }^{\text {Abebia }}$	Groph								Recognise that when the linear and inverse of a linear function such as $y=2 x, y=3 x$ are plotted, they are a reflection in the line $y=x$				
Agebir	Groph								$\begin{aligned} & \text { line } \mathrm{y}=\mathrm{x} \\ & \hline \text { Write down the } \\ & \text { equation of a line } \\ & \text { parallel to a given } \\ & \text { line } \end{aligned}$				
Agebir	Graphs									Recognise, sketch and interpret graphs of cubic, reciprocal and exponential functions		Recognise graphs of simple cubic, reciprocal and exponential functions and the trigonometric functions (in degrees)	
Agebra	Ineualties						Stion ineualitie 0 a		$\begin{aligned} & \text { Represent } \\ & \text { inequalities in one } \\ & \text { variable graphically } \end{aligned}$	$\begin{aligned} & \text { Solve two } \\ & \text { simultaneous } \\ & \text { inequalities } \\ & \text { algebraically and } \\ & \text { show the solution } \\ & \text { set on a number line } \\ & \text { or give the integer } \\ & \text { solutions } \\ & \hline \end{aligned}$	Solve linear inequalities in wo variables graphically	$\begin{aligned} & \text { Solve quadratic } \\ & \text { inequalities in one } \\ & \text { variable, by factorising and } \\ & \text { sketching the graph to find } \\ & \text { critical values } \end{aligned}$	
Agebia	Ineualities						Write down whole number values that satisfy an inequality		Solve more complex linear inequalities in one variable and represent the solution on a number line e.g. -6 $<2 n+4$ or $-9<2 n+$ $3<7$				
								$\begin{aligned} & \hline \text { Solve simple linear } \\ & \text { inequalities in one } \\ & \text { variable and identify } \\ & \text { integer solutions } \\ & \hline \end{aligned}$					
Agebia	Inequalties							Solve simple linear variable and represent the solution on a number line e.g. $3 n$ $+2<11$ and $2 n-1$ >1	Solve more complex linear inequalities in one variable where the unknown is on both sides of the inequality				
${ }^{\text {Abebia }}$	Proof								$\begin{aligned} & \text { Find a counter- } \\ & \text { example to prove } \\ & \text { that a statement is } \\ & \text { not true } \end{aligned}$	$\begin{aligned} & \begin{array}{l} \text { Argue } \\ \text { mathematically to } \\ \text { show algebraic } \\ \text { expressions are } \\ \text { equivalent e.g. } 2 x(x \\ +3)-4\left(3 x-x^{2}\right)=6 x(x \\ -1) \end{array} \\ & \hline \end{aligned}$	Use algebra to support proofs e.g. show that the volume of a cube with side lengths of $(2 x-1) \mathrm{cm}$ is $\left(8 x^{3}\right.$ $\left.12 x^{2}+6 x-1\right) \mathrm{cm}^{3}$		
Agebia	Proof										$\begin{aligned} & \text { Use algebra to support } \\ & \text { simple proofs e.g. show } \\ & \text { that the area of a square } \\ & \text { of length }(x+2)=x^{2}+4 x+ \end{aligned}$ 4		
Agebia	Sequenes					expressions to term in a one-step arithmetic sequence e.g. nth term is $3 n$ or $n+5$)	Begin to use formal algebra to describe the nth term in an arithmetic n nth term in sequence.	$\begin{aligned} & \text { Find and use the } n \text {th } \\ & \text { term of an } \\ & \text { arithmetic sequence } \end{aligned}$	$\begin{aligned} & \text { Identify which } \\ & \text { terms cannot be in } \\ & \text { a sequence } \end{aligned}$	By looking at the spatial patterns of triangular numbers, deduce that the nth term is $1 / 2 n(n+1)$		$\begin{aligned} & \text { Find the } n \text {th term of a } \\ & \text { quadratic sequence of the } \\ & \text { form } n^{2}, a n^{2}, a n^{2} \pm b, a n^{2} \pm \\ & \text { bn } \pm c \end{aligned}$	$\begin{aligned} & \text { Use iteration with } \\ & \text { simple converging } \\ & \text { sequences } \end{aligned}$
Agebra	Sequenes						Find a specific term in the sequence using position-to-term rules			$\begin{aligned} & \text { Continue a quadratic } \\ & \text { sequence and use } \\ & \text { the nth term to } \\ & \text { generate terms } \end{aligned}$			
Agebra	Sequenes				Find a term given its position in a sequence like tenth number in $4 \times$ table is 40 (one operation on n)		Generate arithmeti sequences of numbers squared integers and sequences derived from diagrams						
Agebra	Sequenes					Generate terms of a linear sequence using position to term with positive integers.	Use function machines o find term sequence			$\begin{aligned} & \text { Distinguish between } \\ & \text { arithmetic and } \\ & \text { geometric } \\ & \text { sequences } \end{aligned}$			
Agebra	Sequenes					$\begin{aligned} & \text { Predidet how the } \\ & \text { sequenceshoud d } \\ & \text { continue and dest } \\ & \text { toreseveral more } \end{aligned}$	Reason mathematically the nature of terms in a sequence (e.g. odd, even, multiples)			$\begin{aligned} & \text { Generate the } \\ & \text { sequence of triangle } \\ & \text { numbers by } \\ & \text { considering the } \\ & \text { arrangement of dots } \\ & \text { and deduce that } \mathrm{T}(\mathrm{n}) \\ & =1+2+3+\ldots .+\mathrm{n}, \\ & \text { the sum of the series } \end{aligned}$			
Agebia	Sequeres					Recognise arithmetic sequences from diagrams and draw pattern sequence				Recognise and use simple geometric progressions ($r n$ where n is an integer and r is a rational number >0 or a surd)			
${ }^{\text {Abebia }}$	Sequenes									Use finite/infinite and ascending/ descending to \qquad			
Agebra	Sequenes				$\begin{aligned} & \text { to-term } \\ & \text { definition of a } \\ & \text { sequence in } \end{aligned}$								
Agebir	Smpllives			$\underset{\substack{\text { Usenotation and } \\ \text { sympost } \\ \text { corectit }}}{ }$			Know that expressions involving repeated multiplication can be written as n, n^{2}, n			$\begin{aligned} & \text { Square a linear } \\ & \text { expression and } \\ & \text { collect like terms } \end{aligned}$			$\begin{aligned} & \text { Simplify and } \\ & \text { manipulate algebraic } \\ & \text { expressions involving } \\ & \text { surds and algebraic } \\ & \text { fractions } \end{aligned}$
${ }^{\text {Abebia }}$	Smpliving				$\begin{aligned} & \text { Multiply } \\ & \text { together two } \\ & \text { simple algebraic } \\ & \text { expressions, e.g. } \\ & 2 a \times 3 b \\ & \hline \end{aligned}$		Understand th difference between $2 n$ and n^{2}						
bir	Smpliving				$\begin{array}{l\|l} \hline \begin{array}{l} \text { Use arithmetic } \\ \text { operations with } \\ \text { algebra } \end{array} & \\ \hline \end{array}$								
Agebra	$\underbrace{\text { and }}_{\substack{\text { smplifing } \\ \text { expesios }}}$								$\begin{aligned} & \text { Simplify more } \\ & \text { complex } \\ & \text { expressions } \\ & \text { involving index } \\ & \text { notation. } \\ & \text { E.g. } 3 a^{4} b^{2} \times 5 a^{3} b^{-1} \\ & \left(3 a^{4}\right)^{2} \\ & \hline \end{aligned}$				
Agebia	$\underbrace{\text { a }}_{\substack{\text { smulaneous } \\ \text { euxaios }}}$								Recognise equivalent equations (e.g. $4 x+$ $2 y=7,8 x+4 y=14)$ and understand that these cannot be solved simultaneously	$\begin{aligned} & \text { Set up and solve a } \\ & \text { pair of simultaneous } \\ & \text { equations in two } \\ & \text { variables } \end{aligned}$	Find approximate solutions to simultaneous one linear function and ne non-linear (quadratic graphical approach		Solve exactly, by ubstitution, a pair of linear and quadratic equations
Agebra									$\begin{aligned} & \text { Solve linear/linear } \\ & \text { simultaneous } \\ & \text { equations } \\ & \text { graphically } \end{aligned}$	Solve exactly, by elimination of an unknown, linear/linear simultaneous equations, including where both need multiplying			Solve exactly, by substitution, simultaneou linear and one is in the form $x^{2}+y^{2}=r^{2}$

Agebra	$\underbrace{}_{\substack{\text { Simutaneous } \\ \text { euxaions }}}$									Solve exactly, by substitution, linear/linear equations			
Agebra	$\underbrace{\text { a }}_{\substack{\text { Simutaneous } \\ \text { euxaions }}}$								Write simultaneous equations to represent a situation	Solve simultaneous equations representing a real- life situation graphically and interpret the solution in the context of the question			
(temetr and				Begin to estimate the size of angles	Give a bearing between the points on a map or scale plan		Given the bearing of point A from point B, work out the bearing of B from A	$\begin{aligned} & \text { Mark on a diagram } \\ & \text { the position of point } \\ & \text { B given its bearing } \\ & \text { from the point } \mathrm{A} \\ & \hline \end{aligned}$					
(${ }_{\substack{\text { ceometr and } \\ \text { measues }}}$	${ }^{\text {Accurate }}$ diver		Use a protractor to measure acute angles to the nearest degree	$\begin{aligned} & \text { Measure shapes } \\ & \text { to find } \\ & \text { perimeter sand } \\ & \text { areas } \end{aligned}$	$\begin{aligned} & \text { Understand and } \\ & \text { use the language } \end{aligned}$ $\begin{aligned} & \text { associated wit } \\ & \text { bearings } \end{aligned}$			Use accurate drawing to solve bearings problems					
${ }_{\substack{\text { ceemetreand } \\ \text { mesures }}}^{\substack{\text { a }}}$	${ }_{\text {a }}^{\substack{\text { Accurate } \\ \text { draving }}}$			Use a protractor to draw acute angles to the nearest degr	Use a protractor to draw obtuse angles to the nearest degree								
$\underbrace{}_{\substack{\text { Geometrand } \\ \text { measuses }}}$	${ }_{\text {a }}^{\substack{\text { Accurate } \\ \text { daving }}}$			Use a protractor to measure obtuse angles to the nearest degree	Use a protractor to draw reflex angles to the nearest degree								
	${ }_{\text {a }}^{\substack{\text { Accurate } \\ \text { draving }}}$			$\begin{aligned} & \text { Use apाotracto } \\ & \text { to measure } \\ & \text { reflex angles to } \\ & \text { the nearest } \end{aligned}$	Use beatine to speatrderecion								
$\underbrace{}_{\substack{\text { ceometrand } \\ \text { messuses }}}$	${ }^{\text {Angle proeeties }}$	Explain why some shapes tessellate and why other shapes do not	Identif paralel lines	Consolidate classifying angles as acute, right, obtuse or reflex. Example: $23^{\circ}=$ acute $90^{\circ}=$ right angle $151^{\circ}=$ obtuse $252^{\circ}=$ refle	${ }_{\substack{\text { caluate anges } \\ \text { around a oont }}}$	Identify alternate and corresponding angles on para lines and their values.	Calculate the interio angles of regular polygons	Calculate the interior angles of polygons	Solve angle problems by constructing and solving equations				
$\underbrace{}_{\substack{\text { Geometrand } \\ \text { measues }}}$	Ange proeeties	Know the sum of angles on a straight line	Know the sum of angles around a point	Distinguish between acute and obtuse angles angles	Derive and use the fact that an exterior angle of a triangle is equal to the sum of the two opposite interior angles	Know that the sum of the exterior angles in a polygon is 360°		Find the size of each interior angle or the size of each exterior angle or the number of sides of a regular polygon	Solve two or more step angle problems using angle facts for parallel lines including the use of bearings bearings				
$\underbrace{}_{\substack{\text { Geomerrand } \\ \text { measues }}}$	${ }^{\text {Angle proenties }}$	Tessellate combinations of polygons		Distinguish between acute, obtuse and reflex angles	$\begin{aligned} & \text { Derive and use } \\ & \text { thesumof } \\ & \text { anties ina } \\ & \text { trane and and a } \\ & \text { quadriateral } \end{aligned}$	solve naraer problems using properties of angles, of parallel and intersecting lines, and of triangles and other polygons, by looking at several shapes	Prove the sum of the interior angles in a triangle using paralle! lines	Use the sum of the interior angles of an n-sided polygon	Use two or more step angle problems by finding interior or regular polygons				
${ }^{\substack{\text { ceometrand } \\ \text { measures }}}$	Angep proeeries			Identify perpendicular lines \qquad	Identify interior and exterior angles in a shape		Use the sum of angles in a triangle to deduce and use the angle sum in any polygon						
${ }^{\text {Geometrand }}$ mestes	${ }^{\text {Angle proeeries }}$			Use correct notation for labelling angles	definition of a set of lines that are perpendicular to		Use the fact that the sum of the exterior angles of any polygon is 360°						
(${ }_{\substack{\text { cemetrrand } \\ \text { measues }}}$	Angle proeeties				Recognise and use vertically opposite angles		Use co-interior angles and their values to decide if two lines are parallel						
$\underbrace{}_{\substack{\text { Geometrand } \\ \text { mesures }}}$	Ange properitis				recognise they meet at a point, are on a straight line, or are vertically opposite, and find missing angles. Example: Angles add up to 180°. The given angles are $70^{\circ}+45^{\circ}$ 115°. The missing angle is		dentify co-interio angles and their values.						
${ }_{\substack{\text { Geometrand } \\ \text { measues }}}$	Ange properites												
$\underbrace{}_{\substack{\text { Geometrand } \\ \text { measues }}}$	Ange properites				Use the fact that the sum of the interior angle and the exterior angle is 180°								
$\underbrace{\text { a }}_{\substack{\text { ceometrand } \\ \text { measues }}}$	${ }_{\text {a }}^{\substack{\text { frea and } \\ \text { volume }}}$	Find the perimeter Find of a of a square/rectangle by counting	Eind the efimeter of	Calculate perimeter and area of compound shapes made from triangles rectangles and other shapes	Calculate the areas of more complex shapes made from rectangles	Calculate areas of compound shapes made from ectangles and triangles	Calculate surface areas of shapes made from cuboids, for lengths given as whole numbers	Calculate the engths and areas given the volumes in right prisms		Calculate the volume and surface area of pyramids, cones and spheres	Find the surface area and volumes of compound solids constructed from cubes, cuboids, cones, hemispheres, cylinders	Use the formulae for ength of an arc and area of a sector of a circle to solve problem	Find the area of a segment of a circle given the radius and length of the chord
$\underbrace{}_{\substack{\text { Geometrand } \\ \text { mesurses }}}$	$\underbrace{\substack{\text { Areand } \\ \text { volume }}}_{\text {Area }}$			Calculate the surface area of cubes with a net	Calculate the areas of simple shapes made from rectangles	Deduce and use formulae for the area of a triangle	$\underbrace{}_{\substack{\text { caluale te evolume of } \\ \text { cubois }}}$	Calculate the lengths, areas and volumes in cylinders	Recognise the formulae for area of sectors in a circle.	Use the formulae to find the length of an arc and the area of a sector	Solve problems including examples of solids in everyday use		Solve problem involving more complex shapes and solids, including frustums of cones rustums of cones
$\underbrace{}_{\substack{\text { Geometrand } \\ \text { measues }}}$	$\underbrace{\substack{\text { Areane } \\ \text { volue }}}_{\text {Areand }}$				Work out the missing lengths in a compound shape made from two rectangles	Solve problems involving the area of rectangles where lengths need to be converted to different units							
(temetr and	$\underbrace{\substack{\text { Areand } \\ \text { volume }}}_{\text {Area }}$			Use nets to calculate the surface area of simple cuboids	Calculate the perimeters and areas of shapes made from rectangles	Find the area of triangles by counting i.e. adding full and partial quares	Deduce and use the formula for the area of a trapezium	$\begin{aligned} & \text { Calculate the } \\ & \text { surface area of right } \end{aligned}$ prisms	Recognise the formulae for length of arcs in a circle.		Solve complex area problems where missing sides need to be found using other areas of mathematics		
(${ }_{\substack{\text { cemetrand } \\ \text { mesures }}}$	$\underbrace{\text { a }}_{\substack{\text { Aea and } \\ \text { volume }}}$			Use the formula for the area of a rectangle/squar	Calculate the surface areas of cubes, without net	know the formulae for the volume of cube and a cuboid	Deduce and use the formula for the area of a parallelogram	Calculate the volume of right prisms					
(temetr and	$\underbrace{\text { a }}_{\substack{\text { Area and } \\ \text { volume }}}$				$\substack{\text { Calculate the } \\ \text { surface areas of } \\ \text { simple cutioss } \\ \text { (without tse of } \\ \text { nets) }}$	Use a formula to calculate the areas of parallelograms	Know the formulae for the circumference and area of a circle						
(temetrand						Use a formula t calculate the areas of triangles	Use a formula to calculate the areas of trapezia	$\substack{\text { Find the eerimeters } \\ \text { and } \\ \text { semeas of } \\ \text { semictes and } \\ \text { quatrerer circles }}$					
$\underbrace{}_{\substack{\text { Geometrand } \\ \text { measues }}}$	$\underbrace{\substack{\text { Areand } \\ \text { Voume }}}_{\text {Area }}$					Calculate the area of parallelograms and triangles. Example: Parallelogram: base $=15 \mathrm{~cm}$, height $=8$ $\mathrm{cm} . \mathrm{A}=120 \mathrm{~cm}^{2}$	Use the torul fort (he						
$\underbrace{\text { a }}_{\substack{\text { Geometreand } \\ \text { measues }}}$	${ }_{\text {a }}^{\substack{\text { Area and } \\ \text { Voume }}}$						Use the formulae for the area of a circle, given the radius or diameter						

$\underbrace{}_{\substack{\text { Geenera and } \\ \text { measues }}}$	$\underbrace{\text { a }}_{\substack{\text { areand } \\ \text { volume }}}$												
$\underbrace{}_{\substack{\text { Geometrand } \\ \text { mesuses }}}$	$\underbrace{\substack{\text { Areand } \\ \text { voume }}}_{\text {dea }}$					Recognise when it is possible to use formulae for area and volume of shapes. Example: The formula for the area of a triangle is $A=12 b \times h$ The formula for the area of a parallelogram is $A=$ $b \times h$ The formula for the volume of a cuboid is $V=L \times W \times H$							
$\underbrace{}_{\substack{\text { Geonetrand } \\ \text { mesures }}}$	Criele theoens								$\begin{aligned} & \text { Solve problems } \\ & \text { involving angles, } \\ & \text { triangles and circles } \end{aligned}$	Prove and use facts about the angle subtended at the centre and at the circumference;	Use circle theorems including tangent properties to circles to prove results prove results		
	Cirele therens									$\begin{aligned} & \text { Prove and use the } \\ & \text { fact that angles in } \\ & \text { the same segment } \\ & \text { are equal } \end{aligned}$		Give reasons for angle sizes using mathematical language	
$\underbrace{}_{\substack{\text { Gementrand } \\ \text { mesurses }}}$	Cirele theoens									Prove and use the fact that opposite angles of a cyclic quadrilateral sum to 180°		$\begin{aligned} & \text { Prove and use the } \\ & \text { alternate segment } \\ & \text { theorem } \end{aligned}$	
	Ciret theorems									$\begin{aligned} & \text { Prove and use the } \\ & \text { fact that the angle in } \\ & \text { a semicircle is a right } \\ & \text { angle } \end{aligned}$		Use a combination of circle theorems to prove eometrical problem	
$\underbrace{}_{\substack{\text { Geomerrand } \\ \text { measues }}}$	Congevere				Usente bexic	$\begin{aligned} & \text { Know and } \\ & \text { understand the } \\ & \text { term 'congruent' } \end{aligned}$		$\begin{aligned} & \text { Begin to use } \\ & \text { conguency osolve } \\ & \text { simple problems in } \\ & \text { triangles and } \\ & \text { quadriaterals } \end{aligned}$	Use similarity to solve problems in 2D shapes		Use congruence to show nd reflections preserve length and angle, so that its image under any of these transformations	Find the scale factor of similar shapes, given th volume scale factor	$\begin{aligned} & \text { Solve problems } \\ & \text { involving areas and } \\ & \text { volumes of similar } \\ & \text { shapes and solids } \end{aligned}$
$\underbrace{}_{\substack{\text { Geonetrand } \\ \text { measues }}}$	Conguence					\qquad		Find the scale factor of similar shapes where the scale factor is a fractio					
	Conguence						Identify congruent			Prove using angle facts on parallel lines if two triangles are congruent			
$\underbrace{}_{\substack{\text { Gemenerrand } \\ \text { mesuses }}}$	Conguence						Identify corresponding sides and angles similar shapes						
	Conguence						$\begin{aligned} & \text { Identify shapes that are } \\ & \text { similar, including all } \\ & \text { regular polygons with } \\ & \text { equal numbers of sides } \end{aligned}$						
$\underbrace{\text { a }}_{\substack{\text { Geometrrand } \\ \text { mesares }}}$	Congrence						Know that triangles given SSS, SAS, ASA or RHS are unique, but that triangles given SSA or AAA are not						
$\underbrace{}_{\substack{\text { Geomertrand } \\ \text { measues }}}$	Congeence						Recognise that all corresponding angles in similar shapes are equal in size when the corresponding lengths of sides are not equal in size						
$\underbrace{\text { a }}_{\substack{\text { Geometrrand } \\ \text { mesares }}}$	Conguence												
$\underbrace{}_{\substack{\text { Geenetrand } \\ \text { measues }}}$	${ }^{\text {Constactions }}$			Construct diagrams of everyday 2D situations involving rectangles, triangles, and perpendicular and parallel lines	$\begin{aligned} & \text { Begin to use } \\ & \text { plans and } \\ & \text { elevations } \end{aligned}$	Identify simple nets regular polyhedr regular polyhedra			Understand how standard constructions using straight edge and compasses relate to the properties of two intersecting circles with equal radii	Shade regions given rules			
$\underbrace{\text { a }}_{\substack{\text { Geenetrand } \\ \text { measues }}}$	Constrations	Identify complex arrangements of a net of an open cube	$\begin{aligned} & \text { Know and use } \\ & \text { geometric properties } \\ & \text { of cuboids } \end{aligned}$			Use straight edge construct the midpoint and perpendicular bisector of a line segment	nalyse 3D shapes through cross-sections, plans and elevations	$\begin{aligned} & \text { Draw the locus } \\ & \text { equidistant } \\ & \text { between } 2 \text { points or } \\ & \text { from a point } \end{aligned}$					
$\underbrace{\text { a }}_{\substack{\text { Geenetrrand } \\ \text { mesares }}}$	Constrations	Identify complex arrangements of a net of a closed cube						Produce shapes and paths by using descriptions of					
$\underbrace{}_{\substack{\text { Geenera and } \\ \text { measues }}}$	Constrations	$\begin{aligned} & \text { Know the terms } \\ & \text { face, edge and } \\ & \text { vertex } \end{aligned}$		(lation	\qquad			Understand loci about a point and corner					
$\underbrace{}_{\substack{\text { Geenera and } \\ \text { measues }}}$	Constactions						Deduce properties of simple 3D shapes from their 2D representation	Use construction to ind the locus of a according to a ru					
$\underbrace{\text { a }}_{\substack{\text { Gementrand } \\ \text { measues }}}$	Constrations			$\begin{aligned} & \text { Sketch the faces } \\ & \text { of a cube or } \\ & \text { cuboid } \end{aligned}$				Use straight edge and compass to construct the perpendicular from or to a point on a line segment					
$\underbrace{}_{\substack{\text { Geometrand } \\ \text { mesuses }}}$	Constrations						Identify more complex nets of 3D shapes polyhedra						

	Constracions						$\begin{aligned} & \text { Use straight edge and } \\ & \text { compasses to construct a } \\ & \text { triangle given three sides } \end{aligned}$						
$\underbrace{\text { a }}_{\substack{\text { Geomerer and } \\ \text { measus }}}$	Constrations						Use straight edge and compasses to construc						
Ceomer and	Graph												
$\underbrace{\text { a }}_{\substack{\text { Ceonetrand } \\ \text { measuses }}}$	Messurenet		$\begin{aligned} & \text { Choose suitable } \\ & \text { metric units to } \\ & \text { estimate length and } \\ & \text { area } \end{aligned}$					Convert betwee miles and kilometres Example: 50 miles $=$ $80 \mathrm{~km}, 30 \mathrm{~km}=$ 18.75 miles, 54 miles $=86.4 \mathrm{~km}$					
Ceomer and	Messurenert	$\begin{aligned} & \text { Record readings } \\ & \text { from scales to a } \\ & \text { suitable degree of } \\ & \text { accuracy } \end{aligned}$	Considite suin 12				alculate, estimate and compare volumes of Example: $6 \mathrm{~cm} \times 7 \mathrm{~cm} \times$ $11 \mathrm{~cm}=462 \mathrm{~cm}^{3}$ $288 \mathrm{~cm}^{3}$						
$\underbrace{\text { a }}_{\substack{\text { Geomerrand } \\ \text { mesurse }}}$	Messurenert	Suggest suitable units to estimate or measure length, mass and capacity	$\begin{aligned} & \text { Understand that area } \\ & \text { is measured in } \\ & \text { square centimetres } \end{aligned}$										
$\underbrace{}_{\substack{\text { ceonerer and } \\ \text { mesurse }}}$	Mesurement												
Ceomer and	Messurener			Convert units of time from hours to minutes of from minutes to hours	$\begin{aligned} & \text { Convert } \\ & \text { between metric } \\ & \text { units of length } \end{aligned}$								
	Paralellines		Oraw paralel lines										
Ceomer and	Paralellines												
Ceomeryand	$\underbrace{\substack{\text { a }}}_{\substack{\text { Ribharaged } \\ \text { tranges }}}$							Know the formul for Pythagoras find the hypotenus		$\begin{aligned} & \text { Find angles of } \\ & \text { elevation and angles } \\ & \text { of depression } \end{aligned}$			
Ceomer and									Know the formula for Pythagoras' theorem and use to find a shorter side	$\begin{array}{l\|} \hline \text { Use Pythagoras' } \\ \text { theorem to solve } \\ \text { problems involving } \\ \text { the area of triangles } \\ \hline \end{array}$	$\begin{aligned} & \text { angled triangles } \\ & \hline \text { Understand, recall and use } \\ & \text { Pythagoras' theorem in 3D } \\ & \text { problems } \end{aligned}$		Use the trigonometric ratios to solve 3D problems
Ceomer and	$\underbrace{\text { a }}_{\substack{\text { Righarareded } \\ \text { tranges }}}$												
Ceomer and	$\underbrace{\text { a }}_{\substack{\text { Righarared } \\ \text { tranes }}}$												
Ceoner and	$\underbrace{\text { ata }}_{\substack{\text { Righarapeded } \\ \text { tranges }}}$								cuboid Use and apply Pythagoras' theorem to solve problems in 2 D	Une the ine cosion			
Ceomer and	$\underbrace{\text { a }}_{\substack{\text { Riblaraped } \\ \text { tranges }}}$						Use a calculator to work out trigono functions						
Ceoneryand	$\underbrace{}_{\substack{\text { Shape } \\ \text { properies }}}$		$\begin{aligned} & \text { Identify } \\ & \text { quadrilaterals from } \\ & \text { everyday usage } \end{aligned}$			$\begin{aligned} & \text { Draw a circle given } \\ & \text { the radius or } \\ & \text { diameter } \end{aligned}$		Know that the perpendicular distance from point to a line is the shortest distance to the line		Know that the perpendicular from the centre to the chord bisects the chord		fact that tangents to a point are equal in leng	
Ceoner and	${ }_{\substack{\text { Shape } \\ \text { properies }}}^{\text {a }}$	$\begin{aligned} & \text { Identify all the } \\ & \text { symmetries of 2D } \\ & \text { shapes } \end{aligned}$	Know that the sumof angles in a triangleof angea is 180°	Hedititanger									
Ceoner and	$\underbrace{}_{\substack{\text { Shape } \\ \text { properies }}}$	$\begin{aligned} & \text { Recognise } \\ & \text { properties of } \\ & \text { rectangles } \end{aligned}$	(Reconise efection	$\begin{aligned} & \text { Identify simple } \\ & \text { angle, side and } \\ & \text { symmetry } \\ & \text { properties of } \\ & \text { triangles } \end{aligned}$									
Ceoner and	${ }_{\substack{\text { Shape } \\ \text { proerites }}}$	$\begin{aligned} & \text { Recognise } \\ & \text { properties of } \\ & \text { squares } \end{aligned}$	Use coret notation		\qquad								
Ceomer and	${ }_{\substack{\text { Shape } \\ \text { properies }}}$						$\underbrace{}_{\substack{\text { chout the efefition ofa } \\ \text { circe }}}$						

	${ }_{\substack{\text { Slape } \\ \text { proeries }}}$				$\begin{array}{l\|} \hline \text { Identify and plot } \\ \text { points } \\ \text { determined by } \\ \text { geometric } \\ \text { information } \end{array}$								
(cemetrond	${ }_{\substack{\text { Srape } \\ \text { proeeries }}}$						Solve geometric problems using side and angle properties of equilateral, isosceles and right-angled triangles						
(cemetrond	${ }_{\substack{\text { Shape } \\ \text { properies }}}$					Apply tre properties and definitions of a square and use the angles on a straight i.							
$\underbrace{\text { a }}_{\substack{\text { Ceometrend } \\ \text { measues }}}$													
(cemetrond	${ }_{\substack{\text { Shape } \\ \text { proeeries }}}$												
(eametrand	${ }^{\text {Shape }}$ (proeries												
(cemetrond	Stape												
	${ }_{\substack{\text { Shape } \\ \text { proeries }}}$												
	${ }_{\substack{\text { Shape } \\ \text { properies }}}$				$\begin{aligned} & \hline \text { Use geometric } \\ & \text { language } \\ & \text { appropriately } \\ & \hline \end{aligned}$								
								$\begin{aligned} & \text { Determine whether } \\ & \text { a triangle is right- } \\ & \text { angled given its } \\ & \text { three lengths } \end{aligned}$	$\begin{aligned} & \hline \begin{array}{l} \text { Derive the fact that } \\ \text { base angles of } \\ \text { isosceles triangles } \\ \text { are equal } \end{array} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Complete a formal } \\ & \text { geometric proof of } \\ & \text { similarity of two } \\ & \text { given triangles } \\ & \hline \end{aligned}$			
(cemetrond	nation	$\begin{aligned} & \text { Recognise where a } \\ & \text { shape will be after } \\ & \text { reflection } \end{aligned}$	Recognise and visualise the reflection in a mirror line of a 2D shape			Draw and translate simple shapes on the coordinate plane, and reflect them in the axes. Example: Plot the points $(-6,5),(-4$, $3),(-2,5),(-2,-1)$, $(-4,-3),(-6,-1)$, and join them. Add the same number to the x-coordinates to slide the hexagon across, or to the y - coordinates slide the shape up.	Enlarge 2D shapes, given a centre of enlargement number scale factor						
(cemetrend	Transtorations		Recognise where a shape will be after translation			\qquad	Enlarge a given shape using $(0,0)$ as the centre positive whole number scale factor				Enlarge 2D shapes, given a factor and a centre of enlargement		
$\underbrace{\text { a }}_{\substack{\text { Gementrend } \\ \text { mesures }}}$	matios	$\begin{aligned} & \text { Understand and } \\ & \text { use the language } \\ & \text { associated with } \\ & \text { reflections } \end{aligned}$	$\begin{aligned} & \text { Translate a shape on } \\ & \text { a square/coordinate } \\ & \text { grid } \end{aligned}$			$\begin{aligned} & \text { Know that } \\ & \text { translations, } \\ & \text { rotations and } \\ & \text { reflections preserve } \\ & \text { length and angle } \end{aligned}$	Enlarge shapes with a entre other than $(0,0)$ umber scale factor	$\begin{aligned} & \text { Describe an } \\ & \text { enlargement using } \\ & \text { the scale factor and } \\ & \text { the centre of } \\ & \text { enlargement where } \\ & \text { the scale factor is a } \\ & \text { positive whole } \\ & \text { number } \end{aligned}$	Transform 2D shapes by a more complex combinations of rotations, reflections and translations, e.g. a reflection, followed by a rotation etc.				
(cemetrond	Trantoramions		$\begin{aligned} & \text { Understand and use } \\ & \text { the language } \\ & \text { associated with } \\ & \text { rotations } \end{aligned}$			$\begin{aligned} & \text { Recognise that } \\ & \text { enlargements } \\ & \text { preserve angle but } \\ & \text { not length } \end{aligned}$	Explore enlargement using ICT	Destibe efecterios	\qquad				
	nstomation							Enlarge 2D shapes, given a fractional scale factor with a centre of enlargement $(0,0)$					
	Tanstomatios						Find the scale factor of enlargement where the scale factors is a positive whole number						
(cemetrond	Tanstomatios						Rotate shapes about a centre of rotation other of $90^{\circ}, 180^{\circ}$ or 270° and direction of turn	${ }^{\text {find die eentreof }}$ foraion					
(cemetrond	Trasto							Find the scale factor of enlargement where the scale factors is a positive fraction					
$\underbrace{}_{\substack{\text { Geonetrand } \\ \text { mesures }}}$	Transtormions				Reflectstapes in	$\begin{aligned} & \text { Reflect shapes in a } \\ & \text { mirror line parallel } \\ & \text { to the } x \text { or } y \text { axis } \end{aligned}$	Reflect shapes on a mirror line such as $y=x$,	$\begin{aligned} & \text { Recognise whether } \\ & \text { a reflection is } \\ & \text { correct } \end{aligned}$					
(cemetrend	Trastorations								Transform 2D shapes by a more complex combinations of reflections and describe the resultant single transformation				
	Transtorations							Trentiae shape					
	Transormaions							$\begin{aligned} & \text { Understand and use } \\ & \text { the language and } \\ & \text { notation associated } \\ & \text { with enlargement } \end{aligned}$					
(ceomerond	Transormaions							$\begin{aligned} & \text { Use 2D Vector } \\ & \text { notation for } \\ & \text { translation } \\ & \hline \end{aligned}$					
	Transtormaions							Use vecter notion					
(cemetrond	${ }_{\text {Tribenometr }}$								Know the exact values of $\sin \theta$ and $\cos \theta$ for $\theta=0^{\circ}$, $30^{\circ}, 45^{\circ}, 60^{\circ}$ and 90° know the exact value of tan θ for $\theta=0^{\circ}, 30^{\circ}, 45^{\circ}$ and 60°		Calculate the area of a riangle given the length of angle angle	$\begin{aligned} & \text { Know and apply Area = } 1 / 2 \\ & \text { ab } \sin C \text { to calculate the } \\ & \text { sides or angles of any } \\ & \text { triangle } \end{aligned}$	cosine rules to solve and 3D problems
(cemetrond	Tribonometr										know and apply the cosine rule $a^{2}=b^{2}+c^{2}-2 b c \cos$ A to find unknown lengths	know and apply the cosine rule $a^{2}=b^{2}+c^{2}-2 b c \cos$ A to find unknown angles	
(cemetrond	Trigonemery										Know and apply the sine rule $a / \sin A=b / \sin B=$ $\mathrm{c} / \sin \mathrm{C}$ to find unknown lengths and angles		
(teonetrond	vectors								\pm	Add and subtract scalar multiples of	Calculate the resultant of two vectors		$\begin{aligned} & \text { Apply vector methods } \\ & \text { for simple geometrical } \\ & \text { proofs } \end{aligned}$
(ceomeryand	vectors								$\begin{aligned} & \text { Calculate scalar } \\ & \text { multiples of } \\ & \text { column vectors } \end{aligned}$		Calculate, and represen graphically, the sum of two vectors, the differen of two vectors and a scalar multiple of a vecto		
(temetrand	vectos							$\begin{aligned} & \text { Represent vectors } \\ & \text { given graphically as } \\ & \text { column vectors } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Understand the } \\ & \text { properties of } \\ & \text { negative vectors } \\ & \hline \end{aligned}$		$\begin{aligned} & \text { Solve geometrical } \\ & \text { problems in 2D using } \\ & \text { vector methods } \\ & \hline \end{aligned}$		
	vectors							Undessand and use	$\begin{aligned} & \text { Add and subtract } \\ & \text { simple whole } \\ & \text { number algebraic } \\ & \text { vectors to find the } \\ & \text { resultant } \\ & \hline \end{aligned}$		Wersout en megtide		

Statisics				Extract data and interpret discrete bar charts		Construct, using ICT, simple line graphs for time serie							
Statisis	Contitet				$\begin{aligned} & \text { Interpret simple } \\ & \text { diagrams and } \\ & \text { charts } \end{aligned}$								
Statisics	Conterster			$\begin{aligned} & \text { Find the mode } \\ & \text { from a discrete } \end{aligned}$ data bar chart	Interpret simple pie charts	Design a uestion							
Statisics				Find the modal group from a discrete data grouped bar chart chart	Produce pie charts for categorical data and discrete/continu ous numerical data	Design and use two way tables for discrete and grouped data							
Statisics				Find the mode from any bar chart	data Read and interpret a range of tables, graphs, pictograms and bar charts and answer questions relating to data displayed in these. Example: Show a bar chart of the heights of children in a class. How many children are between one point two metres and one	Design tables recording discrete and continuous data							
Statisics				Produce bar charts including dual bar charts	Unim+t...mminn Understand which representation is most appropriate for the data being presented	Identify where boundary data would go for different use of inequalities. Discrete and continuous data							
Statisics				${ }_{\substack{\text { Procuse } \\ \text { pictogams }}}$	Use information provided to complete a two- way table	interpret and construct pie charts and use these to solve problems. data where 50 people were asked their favourite classic children's book. Construct a pie chart and use it to find out which is the most popula book							
Statisics	(constut			$\underbrace{}_{\substack{\text { Repereeret data } \\ \text { in atabe }}}$		$\begin{aligned} & \text { Interpret data from } \\ & \text { complex compound } \\ & \text { and comparative } \\ & \text { bar charts } \\ & \hline \end{aligned}$							
Statisics	${ }_{\substack{\text { Constutat } \\ \text { sasisiat crats }}}$					Produce grouped frequency tables for continuous data							
						Oraw oreeres sem							
Statisics						Read, interpret construct tables bar charts, pictograms, pie charts and line graphs and use problems. Example: Show a bar chart of the heights of children in a class. How between one point two metres and on point two nine							
Statisis	Conturet												
Statisics	$\begin{aligned} & \text { Histograms and } \\ & \text { cumulative } \\ & \text { frequency } \\ & \text { graphs } \end{aligned}$							Construct on paper, and using ICT, frequency diagrams for grouped discrete	Construct cumulative frequency tables	Construct cumulative frequency graphs	Krow the eporopiate use	Construct and interpret histograms from class intervals with unequal width	
Statisics	$\begin{aligned} & \text { Histograms and } \\ & \begin{array}{l} \text { cunulutive } \\ \text { frequence } \\ \text { grepons } \end{array} \\ & \hline \end{aligned}$								$\begin{aligned} & \text { Know the } \\ & \text { appropriate use of } \\ & \text { a cumulative } \end{aligned}$ frequency graph			From a histogram complete a grouped frequency table	
Statisics	$\begin{aligned} & \begin{array}{l} \text { Histograms and } \\ \text { cumulative } \\ \text { frequency } \\ \text { graphs } \end{array} \\ & \hline \end{aligned}$											From a histogram understand and define frequency density	
Statisics	$\begin{aligned} & \text { Histograms and } \\ & \text { cumulative } \\ & \text { frequency } \\ & \text { graphs } \\ & \hline \end{aligned}$											Undestand nd use	
Statisics	$\underbrace{\text { a }}_{\substack{\text { Mear, median } \\ \text { modeand ange }}}$	Find the range from a set of ordered data		Calculate and interpret the mean as an average. Example: Number of goals scored: 4, 7, 9, 5, 7, 8, 6, 2 Mean number of goals $=(4+7+9$ $+5+7+8+6+$ $\text { 2) } \div 8=48 \div 8=6$	Calculate dाu interpret the mean as an average. Lengths of caterpillars: 3.1 $\mathrm{cm}, 3.6 \mathrm{~cm}, 3.4$ $\mathrm{cm}, 3.7 \mathrm{~cm}, 2.8$ $\mathrm{~cm}, 3.2 \mathrm{~cm}$ Mean length: $(3.1+3.6+3.4+$ $3.7+2.8+3.2) \div$ $6=19.8 \div 8=3.3$		Calculate the mean and range from a frequency table for discrete data	Estimate the mean of grouped data using the midinterval value	Calculate possible values of the set of data given summary statistics	Estimate the median from a grouped frequency table with unequal class widths \qquad	Compare distributions and make inferences, using the shapes of distributions and measures of average and spread, including median and quartiles	Estimate the median (or other information) from a histogram with unequal class width	
Statisics	$\underset{\substack{\text { Mear, median, } \\ \text { modeand anese }}}{\text { and }}$			Calculate the mean, median, mode and range for discrete dat	Calculate the mean fom a simplem frequenery table	Compare two distributions given summary statistics in more complex cases. Cases.	Construct and use frequency polygons to compare sets of data	Find the median, mode and range from a stem and leaf diagram	Calculate the interquartile range of a set of discrete data	Find the median, quartiles and interquartile range for large data sets with grouped data	Compare median and interquartile range of two distributions		
Satatiss				Calculate the median of a set of data	Compare two simple distributions using the range and the mean	Compare two distributions given summary statistics in simple cases	dentify and explain anomalies (outliers) in a data set	Recognise the advantages and disadvantages between measures of average \qquad	Compare the mean, median, mode and range as appropriate of two distributions	Produce box plots rom raw data and identify outliers when given quartiles and median	Compare the measures of spread between a pair of frequency graphs frequency graphs		
Statisics				Compare two simple distributions using the range and the mode	Compare two simple distriutions usin the enge and and the meian	Compare two distributions using the range of data	Recognise when it is approriate to use mean, medina or mode in more complex cases (put in extreme values)	frequency represented by corresponding ectors in two pie upon the total populations represented by each of the pie	Find missing data values given the mean and the number of values	From a box plot estimate frequency greater/less than a given value			
Statisics	$\underbrace{\text { a }}_{\substack{\text { Mear, median, } \\ \text { modeand ange }}}$			$\begin{aligned} & \text { Draw } \\ & \text { conclusions from } \\ & \text { simple statistics } \end{aligned}$ for a single	$\begin{aligned} & \text { From a pie chart } \\ & \text { find the mode } \\ & \text { and the total } \\ & \text { frequency } \end{aligned}$	Interpret data from compound and comparative ba charts	Recognise when modal class is the most approptiate statistic for grouperd data Understand that the	median from a grouped frequency table with equal	Find the missing value given the mean and other data values	Produce box pot	From a cumulative frequency graph estimate frequency greater/less than a given value		
Statisics	$\underbrace{\text { a }}_{\substack{\text { Men, median, } \\ \text { modeand ange }}}$			Find the modal class for a small set of grouped discrete data	Interpret data from simple compound and comparative bar charts		expression 'estimate' will be used where appropriate, when finding the mean of grouped data using midinterval values		Given the number of values and mean of two data sets, combine to find the overall mean.		Use a spreadsheet to calculate mean and range and find median and mode		
Statisics	$\underbrace{\text { a }}_{\substack{\text { Mear, median, } \\ \text { modeand ange }}}$			Find the modal class for a set of continuous data	$\begin{aligned} & \text { Recognise when } \\ & \text { it is appropriate } \\ & \text { to use range, } \\ & \text { mean, median or } \\ & \text { mode in simple } \\ & \text { cases (nice data, } \\ & \text { with no extreme } \\ & \text { values) } \end{aligned}$				Identify the best average to use for a set of data				
Stastiss	$\underset{\substack{\text { Mear, median } \\ \text { modeand } \\ \text { ane }}}{\text { a }}$			Find the mode and range for a small set of discrete data	From a frequency table, calculate the range and identify the containing the median and mode				Interpret box plots to find median, quartiles, range and interquartile conclusions				
Stasisics				Find the mode and range from a bar chart									

$\begin{aligned} & \text { Ratio, } \\ & \text { proportion and } \\ & \text { rates of change } \end{aligned}$	Graph							$\begin{aligned} & \text { Use a conversion } \\ & \text { graph to convert } \\ & \text { between units } \end{aligned}$	$\begin{aligned} & \text { Draw a real life } \\ & \text { linear graph given } \\ & \text { information about } \\ & \text { speed and time } \end{aligned}$				
$\begin{aligned} & \text { Ratio, } \\ & \text { proportion and } \\ & \text { rates of change } \end{aligned}$	Graph												
Ratio, proportion and rates of change	${ }_{\substack{\text { criowh and } \\ \text { deay }}}$							Represent repeated proportional change using a multiplier raised to a power	$\begin{aligned} & \text { Calculate repeated } \\ & \text { proportional } \\ & \text { change } \end{aligned}$				
Ratio, proportion and rates of chang	${ }_{\substack{\text { coiowh and } \\ \text { deay }}}$							Use calculators to explore exponential growth and decay					
Ratio, proportion and rates of change	${ }_{\text {coind }}^{\substack{\text { giouthand } \\ \text { deay }}}$							$\begin{aligned} & \text { Use compound } \\ & \text { interest } \end{aligned}$					
	Identiving					$\begin{aligned} & \text { Use proportional } \\ & \text { reasoning to solve a } \\ & \text { problem } \end{aligned}$		$\begin{aligned} & \text { Understand direct } \\ & \text { proportion as } \\ & \text { equality of ratios } \end{aligned}$					
Ratio, rates of chang	Nessurement					Solve problems involving the calculation and conversion of units of measure, using decimal notation up to 3 decimal places where appropriate. Example: $4000 \mathrm{ml}=$ $4 \mathrm{~L}, 0.36 \mathrm{~m}=36 \mathrm{~cm}$, $450 \mathrm{~g}=0.45 \mathrm{~kg}$		Begin to convert between miles and kilometres. Example: 5 miles $=8$ $\mathrm{~km}, 45$ miles $=72$ $\mathrm{~km}, 180$ miles $=288$ km					
$\substack{\text { Ratio, } \\ \text { patoon and } \\ \text { rates of change }}$	Messurenent					Use, read, write and convert between standard units, converting measurements of length, mass, volume and time from a smaller unit of measure to a larger unit, and vice versa, using decimal notation to up to 3 decimal places Example: $1991 \mathrm{~m}=$ $1991 \mathrm{~km}, 650 \mathrm{ml}=$ 0.65 L, $0.073 \mathrm{~kg}=73 \mathrm{~g}$							
$\begin{aligned} & \text { Ratio, } \\ & \text { proportion and } \\ & \text { rates of change } \end{aligned}$													
Ratio, proportion and rates of change	$\underbrace{\text { a }}_{\substack{\text { Mutitilative } \\ \text { reatiostios }}}$							\qquad					
$\begin{gathered} \text { Ratio, } \\ \text { pation and } \\ \text { proses of change } \end{gathered}$	Perererages						Compare two quantities using percentages, including a range of calculations and contexts	Use the unitary method for an inverse operation, e.g. If I know an item was 80% of the original cost in a sale, find the original price			Find the original amount after repeated percentage change		
$\begin{aligned} & \text { Ratio, } \\ & \text { proportion and } \\ & \text { rates of change } \end{aligned}$	Percerages					$\begin{aligned} & \text { Find the outcome of } \\ & \text { a given percentage } \\ & \text { decrease } \end{aligned}$	Soue probens involive percentese chane						
$\begin{aligned} & \text { Ratio, } \\ & \text { proportion and } \\ & \text { rates of change } \end{aligned}$	Perererages					$\begin{aligned} & \text { Find the outcome of } \\ & \text { a given percentage } \\ & \text { increase } \end{aligned}$	$\begin{aligned} & \text { Use a multiplier to } \\ & \text { increase or decrease } \\ & \text { percentage } \end{aligned}$						
$\begin{aligned} & \text { Ratio, } \\ & \text { proportion and } \\ & \text { rates of change } \end{aligned}$	Perererages					${ }_{\substack{\text { Use pererengese } \\ \text { greater } \\ \text { 10\% }}}$	$£ 40$ is 60%, find 1% by dividing by 60 and then 100% by multiplying by 100 ; give them the scaffolding to answer t question						
Ratio, proportion and rates of chang	Perererages						Use percentages in rea of profit or loss, simple interest, inc calculation						
$\begin{aligned} & \text { Ratio, } \\ & \text { proportion and } \\ & \text { rates of change } \end{aligned}$	${ }^{\text {Rato }}$						Solve problems involving simple ratios, i.e. unequal sharing and grouping using knowledge of fractions and multiples. Example: The ratio of blue tiles to orange tiles is $3: 5$. There are 16 tiles altogether. How many are orange?						
$\begin{aligned} & \text { Ratio, } \\ & \text { proportion and } \\ & \text { rates of change } \end{aligned}$	Scle digams						$\begin{aligned} & \text { Use and interpret maps, } \\ & \text { using proper map scales } \\ & (1: 25000) \end{aligned}$						
$\begin{aligned} & \hline \text { Ratio, } \\ & \text { proportion and } \\ & \text { rates of change } \\ & \hline \end{aligned}$	Sale digams			Estimate length									
	Scle digaras												
	Smilarity											$\begin{aligned} & \text { Find points that divide a } \\ & \text { line in a given ratio, using } \\ & \text { the properties of similar } \\ & \text { triangles } \end{aligned}$	
Ratio, rates of change	Sminarity								$\begin{aligned} & \text { Identify the scale } \\ & \text { factor of an } \\ & \text { enlargement as the } \\ & \text { ratio of the lengths } \\ & \text { of any two } \\ & \text { corresponding line } \\ & \text { segments } \\ & \hline \end{aligned}$				
$\begin{aligned} & \text { Ratio, } \\ & \text { proportion and } \\ & \text { rates of change } \end{aligned}$	Sminatity												
$\begin{gathered} \text { Ration } \\ \text { paporitann } \\ \text { ratese of change } \\ \hline \end{gathered}$	Simiarity												
	Smplifing atio				Redere a atiot	$\begin{aligned} & \hline \text { Reduce ratios to } \\ & \text { their simplest form, } \\ & \text { including three-part } \\ & \text { ratios } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Simplify a ratio } \\ & \text { expressed in fractions or } \\ & \text { decimals } \end{aligned}$	$\begin{gathered} \text { Simpifiveratio } \\ \text { sppeses } \\ \text { differen unis } \end{gathered}$					
$\begin{aligned} & \text { Ratio, } \\ & \text { proportion and } \\ & \text { rates of change } \\ & \hline \end{aligned}$	Smpllyive rato				$\begin{aligned} & \text { Use ratio } \\ & \text { notation } \end{aligned}$			(ex					

